Qualitätszirkel Niren- und Dialysen

Kardiologie Potsdam

Alexianer St. Josephs Potsdam

Dialyse-Pflege-Standard

salt

PICS Ambulanz

Dr.Vetter

Woran erkranken wir in Deutschland?

BG Klinken - Post-COVID-Programm

Herz Check

EMA

Singende Krankenhäuser

Dr. Heart

Herzhose

Lauflabor

IKDT

Online Strafanzeigen

medpoint - Fortbildungskalendar

Was hab ich?

Healthtalk

BKV Info

BKG

KHS BB

KHS BB
.

Kardiologie

Urologie Berlin

bbgk

VEmaH

ProBeweis

aps-ev + Schlichtungsstelle

jkb

DHZB + Charité

zurück ins leben

CRO

Gewebenetzwerk

Anamnese- und Untersuchungsbogen

Diagnostische Pfade

FORTA

CIRS Bayern

Gender Medizin

lebensmittelwarnung.de

idw

360° Super TOP-Thema: Rettungsstelle: Neue Blutgewächse: Durchmesser vergrößern oder Seitenäste bilden?


 

Medizin am Abend Berlin Fazit:  Verzweigen oder dicker werden – Oszillationen bestimmen das Schicksal neuer Adern

Wenn neue Blutgefäße wachsen, müssen sie sich entscheiden, ob sie neue Seitenäste bilden oder ihren Durchmesser vergrößern. 

Prof. Holger Gerhardt am Max-Delbrück-Centrum für Molekulare Medizin (MDC) in der Helmholtz-Gemeinschaft machte mit seinen internationalen Forschungsteams eine entscheidende Entdeckung: 

  • Gefäßzellen können sich verbünden und sich gemeinsam bewegen. 

Die Zellen kommunizieren dafür untereinander mit oszillierenden Signalen, wie die Teams mithilfe von Computersimulationen und Experimenten herausfanden. 
  • Die Ergebnisse haben Bedeutung für Krankheitsbilder wie Diabetes und Krebs. 
Sie erschienen nun im renommierten Open-Access-Fachjournal eLife. 
 Die fluoreszenzmarkierte Netzhaut einer Maus unter dem Mikroskop. Links: Blutgefäße im Verzweigungsmodus, rechts verdicken sie sich. Die oszillierenden Proteine leuchten rot.
 Die fluoreszenzmarkierte Netzhaut einer Maus unter dem Mikroskop. Links: Blutgefäße im Verzweigungsmodus, rechts verdicken sie sich. Die oszillierenden Proteine leuchten rot. Bild: CC-BY, eLife
 
„Eine der großen Fragen der Biologie der Blutgefäße ist: Wie werden Größe und Form dieses schlauchartigen Organsystems reguliert?“, sagt Prof. Holger Gerhardt, Gruppenleiter am MDC in Berlin-Buch und am Berliner Institut für Gesundheitsforschung (BIH). Er ist auch in das Deutsche Zentrum für Herz-Kreislauf-Forschung (DZHK) eingebunden. Der Wissenschaftler, der 2014 vom damaligen London Research Institute nach Berlin gezogen ist, erforscht mit seinen Teams am VIB im belgischen Leuven und am MDC die vielen Aspekte der Angiogenese, also der Bildung und des Wachstums von Blutgefäßen.

Das Hormon VEGFA spielt eine Hauptrolle bei dem Wachstum der Adern.

  • Bei niedrigem VEGFA-Spiegel schaltet es die Gefäßzellen in den Verzweigungsmodus – dem Gefäß wachsen neue Seitenäste. Ist es höher konzentriert, lässt es die Gefäße an Durchmesser zulegen. Der zu Grunde liegende Mechanismus war bisher nicht bekannt.

Holger Gerhardts neue Studie klärt die Zusammenhänge auf: 

„Unsere Studie zeigt, dass sich die Zellen der Adern jeweils neu anordnen, um neue Seitenäste zu bilden oder den Durchmesser zu vergrößern“, sagt der Angiogenese-Spezialist.

Der VEGFA-Spiegel beeinflusst den Notch-Signalweg, über den benachbarte Gefäßzellen miteinander kommunizieren. 
  • In der Signalkette werden bestimmte Proteine in der Zelle periodisch hergestellt und gleich wieder abgebaut, was zu einer oszillierenden Aktivität des Notch-Signalwegs in den Gefäßzellen führt.
  • Bei einem hohen VEGFA-Spiegel synchronisieren sich diese Oszillationen benachbarter Zellen zunehmend miteinander – die Gefäßzellen marschieren im Takt und sorgen so als Kollektiv für die Vergrößerung des Durchmessers des Gefäßes. 
  • Bei niedrigem VEGFA-Spiegel geraten die intrazellulären Schwankungen dagegen wieder aus dem Takt. Die Zellen bewegen sich dann individuell und das Blutgefäß befindet sich im Verzweigungsmodus.

Methodisch war das Forschungsprojekt außergewöhnlich herausfordernd, erklärt Holger Gerhardt: „Mit Computermodellen und Experimenten haben wir uns an die erste Hypothese herangetastet. Diese Strategie führte uns letztlich zu den richtigen Fragen und zu den entscheidenden Experimenten.“ Die oszillierenden Proteine sind nur schwer zu beobachten, weil sie so rasch wieder abgebaut werden. Mit einer fluoreszierenden Markierung versehen, waren die Schwankungen zwar in präparierten Netzhäuten von Mäusen sichtbar, die kollektiven Zellbewegungen aber nur in Zellkultur-Versuchen. Für Beobachtungen im lebenden Organismus sind daher bessere, stärker leuchtende Fluoreszenzmarker nötig. An deren Entwicklung arbeiten die Forscher nun.

Der neu entdeckte Mechanismus ist auch auch für die Therapie von Krankheiten relevant, erklärt Gerhardt: 

„Wir zeigen in der Arbeit auch, dass dieser Mechanismus für die Gefäßverdickung in Krankheitsmodellen für diabetische Retinopathie oder Krebs verantwortlich ist.“

  • Diabetes verursacht eine Schädigung der Netzhaut-Gefäße (Diabetische Retinopathie) und ist eine der häufigsten Ursachen für die Erblindung bei Erwachsenen. 

Die unkontrollierte Angiogenese treibt auch die Krebsentwicklung voran. 

Die Forschungsergebnisse Holger Gerhardts sind somit für Therapien von Bedeutung, die Gefäße wieder normalisieren oder ihr Wachstum hemmen.

Prof. Holger Gerhardt
 Prof. Holger Gerhardt Bild: David Ausserhofer/MDC

Holger Gerhardt ist Forschungsgruppenleiter am MDC und hat eine BIH-Professur für Experimentelle Herz-Kreislaufforschung an der Charité – Universitätsmedizin Berlin, sowie eine DZHK-Professur.

###

Benedetta Ubezio1, Raquel Blanco1, Ilse Geudens2,3, Fabio Stanchi2,3, Thomas Mathivet2,3, Martin Jones1, Anan Ragab1, Katie Bentley1,4, Holger Gerhardt1,2,3,5,6,7 (2016): „Synchronization of endothelial Dll4-Notch dynamics switches blood vessels from branching to expansion.“ eLife 2016. doi:10.7554/eLife.12167

1 Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, UK; 2 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgien; 3 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Belgien; 4 derzeitige Adresse: Computational Biology Laboratory, Center for Vascular Biology Research, Harvard Medical School, Boston, USA; 5 Max-Delbrück Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin; 6 Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Standort Berlin; 7 Berliner Institut für Gesundheitsforschung (BIH), Berlin. Benedetta Ubezio und Raquel Blanco haben gleichermaßen zur Arbeit beigetragen.

Medizin am Abend Berlin DirektKontakt
www.medizin-am-abend.blogspot.com












Über Google: Medizin am Abend Berlin 

Robert-Rössle-Str. 10
13125 Berlin
Deutschland
Berlin


Vera Glaßer
Telefon: 030/94062120
Fax: 030/94064323

E-Mail-Adresse: vera.glasser@mdc-berlin.de

Telefon: 030-9406-3714

E-Mail-Adresse: martin.ballaschk@mdc-berlin.de
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Keine Kommentare :

Kommentar veröffentlichen